The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats.
نویسندگان
چکیده
In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (∼25-55 Hz) and fast (∼60-100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds.
منابع مشابه
Experience-dependent trends in CA1 theta and slow gamma rhythms in freely behaving mice.
CA1 place cells become more anticipatory with experience, an effect thought to be caused by NMDA receptor-dependent plasticity in the CA3-CA1 network. Theta (~5-12 Hz), slow gamma (~25-50 Hz), and fast gamma (~50-100 Hz) rhythms are thought to route spatial information in the hippocampal formation and to coordinate place cell ensembles. Yet, it is unknown whether these rhythms exhibit experienc...
متن کاملSniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states.
Odor signals are conveyed from the olfactory bulb (OB) to the olfactory cortex by two types of projection neurons, tufted cells and mitral cells, which differ in signal timing and firing frequency in response to odor inhalation. Whereas tufted cells respond with early-onset high-frequency burst discharges starting at the middle of the inhalation phase of sniff, mitral cells show odor responses ...
متن کاملSniff Rhythm-paced Fast and Slow Gamma Oscillations in the Olfactory Bulb: Relation to 1 Tufted and Mitral Cells and Behavioral States 2 3
19 20 Odor signals are conveyed from the olfactory bulb (OB) to the olfactory cortex by two 21 types of projection neurons, tufted cells and mitral cells, which differ in signal timing 22 and firing frequency in response to odor inhalation. Whereas tufted cells respond with 23 early-onset high frequency burst discharges starting at the middle of the inhalation 24 phase of sniff, mitral cells sh...
متن کاملSpeed Controls the Amplitude and Timing of the Hippocampal Gamma Rhythm
Cortical and hippocampal gamma oscillations have been implicated in many behavioral tasks. The hippocampus is required for spatial navigation where animals run at varying speeds. Hence we tested the hypothesis that the gamma rhythm could encode the running speed of mice. We found that the amplitude of slow (20-45 Hz) and fast (45-120 Hz) gamma rhythms in the hippocampal local field potential (L...
متن کاملSlow and Fast Gamma Rhythms Coordinate Different Spatial Coding Modes in Hippocampal Place Cells
Previous work has hinted that prospective and retrospective coding modes exist in hippocampus. Prospective coding is believed to reflect memory retrieval processes, whereas retrospective coding is thought to be important for memory encoding. Here, we show in rats that separate prospective and retrospective modes exist in hippocampal subfield CA1 and that slow and fast gamma rhythms differential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hippocampus
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2015